import pandas as pd
train = pd.read_csv("bike/train.csv", parse_dates=['datetime'])
test = pd.read_csv("bike/test.csv", parse_dates=['datetime'])
train.columns
Index(['datetime', 'season', 'holiday', 'workingday', 'weather', 'temp', 'atemp', 'humidity', 'windspeed', 'casual', 'registered', 'count'], dtype='object')
test.columns
Index(['datetime', 'season', 'holiday', 'workingday', 'weather', 'temp', 'atemp', 'humidity', 'windspeed'], dtype='object')
train.info()
<class 'pandas.core.frame.DataFrame'> RangeIndex: 10886 entries, 0 to 10885 Data columns (total 12 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 datetime 10886 non-null datetime64[ns] 1 season 10886 non-null int64 2 holiday 10886 non-null int64 3 workingday 10886 non-null int64 4 weather 10886 non-null int64 5 temp 10886 non-null float64 6 atemp 10886 non-null float64 7 humidity 10886 non-null int64 8 windspeed 10886 non-null float64 9 casual 10886 non-null int64 10 registered 10886 non-null int64 11 count 10886 non-null int64 dtypes: datetime64[ns](1), float64(3), int64(8) memory usage: 1020.7 KB
test.info()
<class 'pandas.core.frame.DataFrame'> RangeIndex: 6493 entries, 0 to 6492 Data columns (total 9 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 datetime 6493 non-null datetime64[ns] 1 season 6493 non-null int64 2 holiday 6493 non-null int64 3 workingday 6493 non-null int64 4 weather 6493 non-null int64 5 temp 6493 non-null float64 6 atemp 6493 non-null float64 7 humidity 6493 non-null int64 8 windspeed 6493 non-null float64 dtypes: datetime64[ns](1), float64(3), int64(5) memory usage: 456.7 KB