단어 임베딩(word embedding) 이해하기

학습 내용

- 단어 임베딩 기본 개념 이해
- IMDB 영화 리뷰 데이터 셋을 활용하여 단어 임베딩 실습해 보기

목차

01. 단어 임베딩(word embedding)의 이해

02. 단어 임베딩을 만드는 두가지 방법

03. 해결 제안

04. IMDB 데이터를 이용한 Embedding 실습

01. 단어 임베딩(word embedding)의 이해

목차로 이동하기

단어 임베딩 이해하기

- 단어와 벡터를 연관짓는 강력하고 인기 있는 또 다른 방법 중의 하나는 단어 임베딩이다.
 - 단어 임베딩은 **밀집 단어 벡터를 사용**하는 것.
 - 단어 임베딩은 언어를 **기하학적 공간에 매핑**하는 것.
 - 잘 구축된 임베딩 공간에서는 동의어가 비슷한 단어 벡터로 임베딩된다.

Onehot vs 단어 임베딩 비교

- A. 고차원 저차원
 - 원핫 인코딩 기법으로 만든 벡터는 대부분 0으로 채워지는 고차원이다.
 - 단어 임베딩은 저차원 기법이다.
 - 원핫인코딩은 단어 사전이 2만개의 토큰으로 이루어져 있다면 20,000차원의 벡터를 사용
 - 보통 단어 임베딩은 **256, 512, 1024차원의 단어 임베딩**을 사용.
- B. 원-핫 인코딩이나 해싱으로 얻은 단어 표현은 희소하고 고차원이며, 수동으로 인코딩된다.
- C. 단어 임베딩은 조밀하고 비교적 저차원이며 데이터로부터 학습

02. 단어 임베딩 만드는 두가지 방법

목차로 이동하기

- 신경망을 구축하고 학습하는 방법처럼 단어 벡터를 학습하기
- 사전에 훈련된 단어 임베딩을 로드하기(pretrained word embedding)

- 구글의 토마스 미코로프 word2vec 알고리즘(<u>https://code.google.com/archive/p/word2vec</u> (<u>https://code.google.com/archive/p/word2vec</u>))
- 스탠포드 대학교 : GloVe(https://nlp.stanford.edu/projects/glove))

2-1 Embedding 층을 사용하여 단어 임베딩 학습하기

- 단어와 밀집 벡터를 연관 짓는 가장 간단한 방법은 랜덤하게 벡터를 선택하는 것.
- 이 방식의 문제점은 임베딩 공간이 구조적이지 않다는 것.
 - 예를 들어, accurate와 exact단어는 대부분 문장에서 비슷한 의미로 사용. 단, 다른 임베딩을 갖는다.
 - 심층 신경망이 이런 임의의 구조적이지 않은 임베딩 공간을 이해하기는 어렵다.

03. 해결 제안

목차로 이동하기

- 문제는 **사람의 언어를 완전히 매핑**시킬 수 있는 **이상적인 단어 임베딩 공간**을 만드는 것이다. 이런 공간이 있을까?
- 아마도 가능하겠지만, 완벽하게는 어려울 수 있다.
- 다만, 최근에는 많은 발전을 이루었다.

04. IMDB 데이터를 이용한 Embedding 실습

목차로 이동하기

- Embedding 층(특정 단어를 나타내는) 정수 인덱스를 밀집 벡터로 매핑하는 딕셔너리로 이해
- 정수를 입력받아, 내부 딕셔너리에서 이 정수와 연관된 벡터를 찾아 반환

In [1]:

```
from keras.layers import Embedding

# Embedding 층은 적어도 두 개의 매개변수를 사용.

# 가능한 토큰의 개수(여기서는 1,000으로 단어 인덱스 최댓값 + 1입니다)와

# 출력되는 임베딩 차원(여기서는 64)입니다
embedding_layer = Embedding(1000, 64)

print( type(embedding_layer), embedding_layer)
```

<class 'keras.layers.core.embedding.Embedding'> <keras.layers.core.embedding.Embedding
object at 0x0000026039F4D520>

Embedding층의 입력

• (samples, 임베딩차원, sequence_length)

- samples : 샘플수
- sequence length : 시퀀스 길이 (단순히 길이)
- 정수 텐서를 입력으로 받음. 2D텐서
- 여기서 sequence length가 작은 길이의 시퀀스는 **0으로 패딩**되고, **긴 시퀀스는 잘리게** 됩니다.

Embedding층의 출력

- (samples, sqeuence_length, 임베딩 차원)
 - samples : 샘플수
 - sequence_length : 시퀀스 길이
 - embedding dimensionality : 임베딩 차원
 - 출력은 3D 텐서가 된다.

Embedding층의 객체

- 가중치는 다른 층과 마찬가지로 랜덤하게 초기화
- 신경망의 학습을 통해 점차 조정되어진다.
 - 훈련이 끝나면 임베딩 공간은 **특정 문제에 특화된 구조**를 많이 갖는다.
- IMDB 데이터 셋
 - 총 5만개로 이루어진 긍정 부정의 리뷰
 - 이 데이터셋은 훈련 데이터 25,000개와 테스트 데이터 25,000개로 나뉘어 있고 각각 50%는 부정, 50% 는 긍정 리뷰로 구성
 - 스탠포드 대학의 앤드류 마스(Andrew Maas)가 수집한 데이터 셋
- train data는 여러개의 단어로 이루어진 리뷰. 리뷰 단어는 각각 매칭된 word index 값으로 이루어짐.
- train labels는 1(긍정), 0(부정)이 됨.

In [10]:

```
from keras.datasets import imdb
from tensorflow.keras import preprocessing
```

In [11]:

```
# 특성으로 사용할 단어의 수
max_features = 10000

# 정수 리스트로 데이터를 로드합니다.
(X_train, y_train), (X_test, y_test) = imdb.load_data(num_words=max_features)
```

In [12]:

```
X_train.shape, y_train.shape, X_test.shape, y_test.shape
```

Out[12]:

```
((25000,), (25000,), (25000,), (25000,))
```

In [13]:

```
print(X_train[0])
print(y_train[0])
```

[1, 14, 22, 16, 43, 530, 973, 1622, 1385, 65, 458, 4468, 66, 3941, 4, 173, 36, 256, 5, 25, 100, 43, 838, 112, 50, 670, 2, 9, 35, 480, 284, 5, 150, 4, 172, 112, 167, 2, 336, 385, 39, 4, 172, 4536, 1111, 17, 546, 38, 13, 447, 4, 192, 50, 16, 6, 147, 202 5, 19, 14, 22, 4, 1920, 4613, 469, 4, 22, 71, 87, 12, 16, 43, 530, 38, 76, 15, 13, 1 247, 4, 22, 17, 515, 17, 12, 16, 626, 18, 2, 5, 62, 386, 12, 8, 316, 8, 106, 5, 4, 2 223, 5244, 16, 480, 66, 3785, 33, 4, 130, 12, 16, 38, 619, 5, 25, 124, 51, 36, 135, 48, 25, 1415, 33, 6, 22, 12, 215, 28, 77, 52, 5, 14, 407, 16, 82, 2, 8, 4, 107, 117, 5952, 15, 256, 4, 2, 7, 3766, 5, 723, 36, 71, 43, 530, 476, 26, 400, 317, 46, 7, 4, 2, 1029, 13, 104, 88, 4, 381, 15, 297, 98, 32, 2071, 56, 26, 141, 6, 194, 7486, 18, 4, 226, 22, 21, 134, 476, 26, 480, 5, 144, 30, 5535, 18, 51, 36, 28, 224, 92, 25, 10 4, 4, 226, 65, 16, 38, 1334, 88, 12, 16, 283, 5, 16, 4472, 113, 103, 32, 15, 16, 534 5, 19, 178, 32]

In [14]:

```
# 리뷰의 길이와 10개 단어(인덱스) 보기
len(X_train[0]), X_train[0][0:10] # 단어가 218개 단어로 구성
```

Out[14]:

(218, [1, 14, 22, 16, 43, 530, 973, 1622, 1385, 65])

다양한 길이가 리뷰가 있을 것이다.

- 리뷰에서 맨 마지막 50개 단어를 얻고, 나머지는 버린다. 또는 길이가 짧다면 0으로 채운다.
- 시퀀스의 길이가 50개로 한다.
- 리스트 형태의 리뷰를 2D 정수 텐서로 변환 : preprocessing.sequence.pad_sequences

텍스트 데이터 전처리

In [15]:

```
# 리스트를 (samples, maxlen) 크기의 2D 정수 텐서로 변환합니다.
maxlen = 50

X_train_n = preprocessing.sequence.pad_sequences(X_train, maxlen=maxlen)
X_test_n = preprocessing.sequence.pad_sequences(X_test, maxlen=maxlen)
```

In [16]:

```
print("변경 전 : " , X_train.shape, X_test.shape)
print("변경 후 : ", X_train_n.shape, X_test_n.shape)
```

변경 전: (25000,) (25000,) 변경 후: (25000, 50) (25000, 50)

왜 1D 텐서를 2D텐서로 변경하는가?

- Embedding() 층은 다음과 같이 입력(2D텐서)을 받는다.
- (samples, sequence_length)

In [17]:

```
from keras.models import Sequential from keras.layers import Flatten, Dense, Embedding
```

- Embedding층의 출력
 - (samples, sqeuence length, embedding dimensionality)
 - (단어 인덱스, 시퀀스 길이, 임베딩 차원-출력)

모델 구축

In [18]:

maxlen

Out[18]:

50

In [19]:

```
model = Sequential()
# 나중에 임베딩된 입력을
# Flatten 층에서 펼치기 위해 Embedding 층에 input_length를 지정
# Embedding 층의 입력은 2D (samples, maxlen) 이다.
model.add(Embedding(10000, 8, input_length=maxlen))
# Embedding 층의 출력 크기는 (samples, maxlen, 8)가 됩니다.
```

In [20]:

model.summary()

Model: "sequential"

Layer (type)	Output Shape	Param #
embedding_1 (Embedding)	(None, 50, 8)	80000

Total params: 80,000 Trainable params: 80,000 Non-trainable params: 0

• 최대 길이 50개의 단어를 학습을 통해 8차원 임베딩 공간을 만든다는 것이다.

In [21]:

```
model.add(Flatten())
model.add(Dense(1, activation='sigmoid'))
model.summary()
```

Model: "sequential"

Output Shape	Param #
(None, 50, 8)	80000
(None, 400)	0
(None, 1)	401
	(None, 50, 8) (None, 400)

Total params: 80,401 Trainable params: 80,401 Non-trainable params: 0

In [22]:

```
Epoch 1/10
625/625 [=======] - 3s 3ms/step - loss: 0.6571 - acc: 0.6413
- val_loss: 0.5631 - val_acc: 0.7550
Epoch 2/10
625/625 [======] - 1s 2ms/step - loss: 0.4599 - acc: 0.8023
- val_loss: 0.4326 - val_acc: 0.8004
Epoch 3/10
625/625 [============ ] - 1s 2ms/step - loss: 0.3660 - acc: 0.8421
- val_loss: 0.4038 - val_acc: 0.8110
Epoch 4/10
625/625 [======] - 1s 2ms/step - loss: 0.3242 - acc: 0.8618
- val_loss: 0.3956 - val_acc: 0.8170
Epoch 5/10
625/625 [===========] - 1s 2ms/step - loss: 0.2972 - acc: 0.8762
- val_loss: 0.3955 - val_acc: 0.8156
Epoch 6/10
625/625 [=======] - 1s 2ms/step - loss: 0.2762 - acc: 0.8863
- val_loss: 0.4008 - val_acc: 0.8130
Epoch 7/10
625/625 [=========
                          =======] - 1s 2ms/step - loss: 0.2581 - acc: 0.8952
- val_loss: 0.4065 - val_acc: 0.8162
Epoch 8/10
625/625 [==========] - 1s 2ms/step - loss: 0.2412 - acc: 0.9037
- val_loss: 0.4124 - val_acc: 0.8130
Epoch 9/10
625/625 [======] - 1s 2ms/step - loss: 0.2251 - acc: 0.9111
- val_loss: 0.4190 - val_acc: 0.8110
Epoch 10/10
625/625 [======] - 1s 2ms/step - loss: 0.2086 - acc: 0.9190
- val_loss: 0.4286 - val_acc: 0.8100
CPU times: total: 24.2 s
Wall time: 16 s
```

In [24]:

```
model.evaluate(X_test_n, y_test)
```

```
782/782 [======] - 2s 2ms/step - loss: 0.4256 - acc: 0.8188
```

Out [24]:

[0.4255502223968506, 0.8187599778175354]

- 학습 후, 테스트 데이터 평가 결과 정확도가 약 81%입니다.
- 리뷰 50개의 단어(시퀀스 길이)만 사용하여 좋은 결과를 얻었습니다.

- 임베딩 층을 펼쳐 하나의 Dense 층을 이용하여 학습수행. 입력 시퀀스 있는 각 단어를 독립적으로 다루었습니다.
- 단어 사이의 관계나 문장 구조를 고려하지 않음.
 - 해결책 : 각 시퀀스 전체를 고려한 특성이 학습되도록 **임베딩 층 위에 순환 층**이나 **1D 합성곱 층을 추가** 하는 것이 좋다.

정리

- 토큰(단어 등)를 벡터로 변환하는 방법
 - 원핫 인코딩
 - 원-핫 해싱 : : 각 단어에 명시적으로 인덱스를 할당. 임의의 사이즈에 데이터를 매핑.
 - 단어 임베딩 사용
 - 케라스에서 Embedding을 이용하여 **일정단어를 일정 차원의 수로 단어를 벡터화** 시킨다.
 - 여기서의 **가중치는 학습**을 통해 **특정 데이터에 특정된 임베딩 공간**이 만들어진다.