import pycaret
from IPython.display import Image, display
import pandas as pd
print(pycaret.__version__)
2.3.10
from pycaret.datasets import get_data
dataset = get_data('credit')
LIMIT_BAL | SEX | EDUCATION | MARRIAGE | AGE | PAY_1 | PAY_2 | PAY_3 | PAY_4 | PAY_5 | ... | BILL_AMT4 | BILL_AMT5 | BILL_AMT6 | PAY_AMT1 | PAY_AMT2 | PAY_AMT3 | PAY_AMT4 | PAY_AMT5 | PAY_AMT6 | default | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 20000 | 2 | 2 | 1 | 24 | 2 | 2 | -1 | -1 | -2 | ... | 0.0 | 0.0 | 0.0 | 0.0 | 689.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1 |
1 | 90000 | 2 | 2 | 2 | 34 | 0 | 0 | 0 | 0 | 0 | ... | 14331.0 | 14948.0 | 15549.0 | 1518.0 | 1500.0 | 1000.0 | 1000.0 | 1000.0 | 5000.0 | 0 |
2 | 50000 | 2 | 2 | 1 | 37 | 0 | 0 | 0 | 0 | 0 | ... | 28314.0 | 28959.0 | 29547.0 | 2000.0 | 2019.0 | 1200.0 | 1100.0 | 1069.0 | 1000.0 | 0 |
3 | 50000 | 1 | 2 | 1 | 57 | -1 | 0 | -1 | 0 | 0 | ... | 20940.0 | 19146.0 | 19131.0 | 2000.0 | 36681.0 | 10000.0 | 9000.0 | 689.0 | 679.0 | 0 |
4 | 50000 | 1 | 1 | 2 | 37 | 0 | 0 | 0 | 0 | 0 | ... | 19394.0 | 19619.0 | 20024.0 | 2500.0 | 1815.0 | 657.0 | 1000.0 | 1000.0 | 800.0 | 0 |
5 rows × 24 columns
print(dataset.shape)
dataset.head()
## target : default
(24000, 24)
LIMIT_BAL | SEX | EDUCATION | MARRIAGE | AGE | PAY_1 | PAY_2 | PAY_3 | PAY_4 | PAY_5 | ... | BILL_AMT4 | BILL_AMT5 | BILL_AMT6 | PAY_AMT1 | PAY_AMT2 | PAY_AMT3 | PAY_AMT4 | PAY_AMT5 | PAY_AMT6 | default | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 20000 | 2 | 2 | 1 | 24 | 2 | 2 | -1 | -1 | -2 | ... | 0.0 | 0.0 | 0.0 | 0.0 | 689.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1 |
1 | 90000 | 2 | 2 | 2 | 34 | 0 | 0 | 0 | 0 | 0 | ... | 14331.0 | 14948.0 | 15549.0 | 1518.0 | 1500.0 | 1000.0 | 1000.0 | 1000.0 | 5000.0 | 0 |
2 | 50000 | 2 | 2 | 1 | 37 | 0 | 0 | 0 | 0 | 0 | ... | 28314.0 | 28959.0 | 29547.0 | 2000.0 | 2019.0 | 1200.0 | 1100.0 | 1069.0 | 1000.0 | 0 |
3 | 50000 | 1 | 2 | 1 | 57 | -1 | 0 | -1 | 0 | 0 | ... | 20940.0 | 19146.0 | 19131.0 | 2000.0 | 36681.0 | 10000.0 | 9000.0 | 689.0 | 679.0 | 0 |
4 | 50000 | 1 | 1 | 2 | 37 | 0 | 0 | 0 | 0 | 0 | ... | 19394.0 | 19619.0 | 20024.0 | 2500.0 | 1815.0 | 657.0 | 1000.0 | 1000.0 | 800.0 | 0 |
5 rows × 24 columns
train = dataset.sample(frac=0.9, random_state=77)
test = dataset.drop(train.index)
train.shape, test.shape
((21600, 24), (2400, 24))
### index 재설정
train.reset_index(inplace=True, drop=True)
test.reset_index(inplace=True, drop=True)
display(train), display(test)
LIMIT_BAL | SEX | EDUCATION | MARRIAGE | AGE | PAY_1 | PAY_2 | PAY_3 | PAY_4 | PAY_5 | ... | BILL_AMT4 | BILL_AMT5 | BILL_AMT6 | PAY_AMT1 | PAY_AMT2 | PAY_AMT3 | PAY_AMT4 | PAY_AMT5 | PAY_AMT6 | default | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 80000 | 2 | 3 | 1 | 39 | -1 | -1 | -1 | 0 | -1 | ... | 7309.0 | 2568.0 | 2199.0 | 780.0 | 6837.0 | 1000.0 | 2568.0 | 2199.0 | 4067.0 | 1 |
1 | 300000 | 2 | 1 | 1 | 45 | -1 | -1 | -1 | 0 | 0 | ... | 22056.0 | 14020.0 | 1230.0 | 10017.0 | 22456.0 | 0.0 | 0.0 | 1230.0 | 0.0 | 1 |
2 | 30000 | 2 | 3 | 3 | 48 | 0 | 0 | 2 | 0 | 0 | ... | 24817.0 | 29220.0 | 17260.0 | 4000.0 | 0.0 | 10000.0 | 5000.0 | 1700.0 | 0.0 | 0 |
3 | 180000 | 1 | 1 | 1 | 37 | 1 | -2 | -2 | -2 | -1 | ... | 0.0 | 2201.0 | 2201.0 | 0.0 | 0.0 | 0.0 | 2201.0 | 0.0 | 0.0 | 0 |
4 | 160000 | 2 | 2 | 1 | 31 | 3 | 2 | 2 | 0 | 0 | ... | 136066.0 | 143005.0 | 129960.0 | 2000.0 | 5000.0 | 4600.0 | 14650.0 | 0.0 | 5100.0 | 1 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
21595 | 80000 | 1 | 1 | 2 | 34 | 2 | 2 | 2 | 2 | 2 | ... | 64682.0 | 65614.0 | 67007.0 | 2800.0 | 3000.0 | 2500.0 | 2600.0 | 2600.0 | 2600.0 | 1 |
21596 | 80000 | 1 | 1 | 2 | 33 | 0 | 0 | 0 | 0 | -2 | ... | -2639.0 | -2787.0 | 34732.0 | 5000.0 | 14016.0 | 0.0 | 2000.0 | 38000.0 | 6000.0 | 0 |
21597 | 20000 | 1 | 2 | 2 | 22 | 0 | 0 | 2 | 2 | 2 | ... | 21178.0 | 20329.0 | 20853.0 | 3000.0 | 0.0 | 3000.0 | 0.0 | 1000.0 | 400.0 | 0 |
21598 | 80000 | 1 | 2 | 1 | 34 | 1 | 2 | 2 | 0 | 0 | ... | 65047.0 | 66504.0 | 74360.0 | 3000.0 | 0.0 | 2400.0 | 2500.0 | 9000.0 | 0.0 | 0 |
21599 | 170000 | 1 | 1 | 1 | 38 | 1 | -2 | -2 | -2 | -2 | ... | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1 |
21600 rows × 24 columns
LIMIT_BAL | SEX | EDUCATION | MARRIAGE | AGE | PAY_1 | PAY_2 | PAY_3 | PAY_4 | PAY_5 | ... | BILL_AMT4 | BILL_AMT5 | BILL_AMT6 | PAY_AMT1 | PAY_AMT2 | PAY_AMT3 | PAY_AMT4 | PAY_AMT5 | PAY_AMT6 | default | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 100000 | 2 | 2 | 2 | 23 | 0 | -1 | -1 | 0 | 0 | ... | 221.0 | -159.0 | 567.0 | 380.0 | 601.0 | 0.0 | 581.0 | 1687.0 | 1542.0 | 0 |
1 | 50000 | 2 | 3 | 2 | 30 | 0 | 0 | 0 | 0 | 0 | ... | 17878.0 | 18931.0 | 19617.0 | 1300.0 | 1300.0 | 1000.0 | 1500.0 | 1000.0 | 1012.0 | 0 |
2 | 360000 | 1 | 1 | 2 | 33 | 0 | 0 | 0 | 0 | 0 | ... | 628699.0 | 195969.0 | 179224.0 | 10000.0 | 7000.0 | 6000.0 | 188840.0 | 28000.0 | 4000.0 | 0 |
3 | 400000 | 2 | 2 | 1 | 29 | 0 | 0 | 0 | 0 | 0 | ... | 360199.0 | 356656.0 | 364089.0 | 17000.0 | 15029.0 | 30000.0 | 12000.0 | 12000.0 | 23000.0 | 0 |
4 | 200000 | 1 | 1 | 1 | 57 | -2 | -2 | -2 | -1 | 2 | ... | 8174.0 | 8198.0 | 7918.0 | 0.0 | 0.0 | 8222.0 | 300.0 | 0.0 | 1000.0 | 1 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
2395 | 50000 | 1 | 3 | 1 | 46 | 3 | 3 | 2 | 0 | 0 | ... | 50033.0 | 9779.0 | 9924.0 | 0.0 | 7.0 | 1104.0 | 445.0 | 400.0 | 204.0 | 0 |
2396 | 360000 | 1 | 1 | 2 | 31 | -1 | -1 | -1 | 0 | 0 | ... | 18498.0 | 18422.0 | 1842.0 | 51.0 | 20007.0 | 1590.0 | 1000.0 | 1842.0 | 390.0 | 0 |
2397 | 50000 | 1 | 2 | 1 | 37 | 1 | 2 | 2 | 2 | 0 | ... | 2846.0 | 1585.0 | 1324.0 | 0.0 | 3000.0 | 0.0 | 0.0 | 1000.0 | 1000.0 | 1 |
2398 | 50000 | 1 | 2 | 1 | 44 | 1 | 2 | 2 | 2 | 0 | ... | 28192.0 | 22676.0 | 14647.0 | 2300.0 | 1700.0 | 0.0 | 517.0 | 503.0 | 585.0 | 0 |
2399 | 80000 | 1 | 2 | 2 | 34 | 2 | 2 | 2 | 2 | 2 | ... | 77519.0 | 82607.0 | 81158.0 | 7000.0 | 3500.0 | 0.0 | 7000.0 | 0.0 | 4000.0 | 1 |
2400 rows × 24 columns
(None, None)
from pycaret.classification import *
model_set = setup(data=train, target='default', session_id=123)
Description | Value | |
---|---|---|
0 | session_id | 123 |
1 | Target | default |
2 | Target Type | Binary |
3 | Label Encoded | None |
4 | Original Data | (21600, 24) |
5 | Missing Values | False |
6 | Numeric Features | 14 |
7 | Categorical Features | 9 |
8 | Ordinal Features | False |
9 | High Cardinality Features | False |
10 | High Cardinality Method | None |
11 | Transformed Train Set | (15119, 89) |
12 | Transformed Test Set | (6481, 89) |
13 | Shuffle Train-Test | True |
14 | Stratify Train-Test | False |
15 | Fold Generator | StratifiedKFold |
16 | Fold Number | 10 |
17 | CPU Jobs | -1 |
18 | Use GPU | False |
19 | Log Experiment | False |
20 | Experiment Name | clf-default-name |
21 | USI | 7092 |
22 | Imputation Type | simple |
23 | Iterative Imputation Iteration | None |
24 | Numeric Imputer | mean |
25 | Iterative Imputation Numeric Model | None |
26 | Categorical Imputer | constant |
27 | Iterative Imputation Categorical Model | None |
28 | Unknown Categoricals Handling | least_frequent |
29 | Normalize | False |
30 | Normalize Method | None |
31 | Transformation | False |
32 | Transformation Method | None |
33 | PCA | False |
34 | PCA Method | None |
35 | PCA Components | None |
36 | Ignore Low Variance | False |
37 | Combine Rare Levels | False |
38 | Rare Level Threshold | None |
39 | Numeric Binning | False |
40 | Remove Outliers | False |
41 | Outliers Threshold | None |
42 | Remove Multicollinearity | False |
43 | Multicollinearity Threshold | None |
44 | Remove Perfect Collinearity | True |
45 | Clustering | False |
46 | Clustering Iteration | None |
47 | Polynomial Features | False |
48 | Polynomial Degree | None |
49 | Trignometry Features | False |
50 | Polynomial Threshold | None |
51 | Group Features | False |
52 | Feature Selection | False |
53 | Feature Selection Method | classic |
54 | Features Selection Threshold | None |
55 | Feature Interaction | False |
56 | Feature Ratio | False |
57 | Interaction Threshold | None |
58 | Fix Imbalance | False |
59 | Fix Imbalance Method | SMOTE |
best_model = compare_models()
Model | Accuracy | AUC | Recall | Prec. | F1 | Kappa | MCC | TT (Sec) | |
---|---|---|---|---|---|---|---|---|---|
lda | Linear Discriminant Analysis | 0.8207 | 0.7703 | 0.3770 | 0.6856 | 0.4864 | 0.3887 | 0.4143 | 0.2230 |
ridge | Ridge Classifier | 0.8205 | 0.0000 | 0.3644 | 0.6934 | 0.4776 | 0.3818 | 0.4106 | 0.0260 |
gbc | Gradient Boosting Classifier | 0.8195 | 0.7803 | 0.3632 | 0.6889 | 0.4756 | 0.3790 | 0.4073 | 0.9040 |
ada | Ada Boost Classifier | 0.8180 | 0.7738 | 0.3539 | 0.6866 | 0.4668 | 0.3705 | 0.4002 | 0.2290 |
lightgbm | Light Gradient Boosting Machine | 0.8171 | 0.7768 | 0.3709 | 0.6697 | 0.4772 | 0.3773 | 0.4016 | 0.0840 |
rf | Random Forest Classifier | 0.8127 | 0.7655 | 0.3682 | 0.6493 | 0.4699 | 0.3665 | 0.3883 | 0.4800 |
et | Extra Trees Classifier | 0.8032 | 0.7426 | 0.3768 | 0.6018 | 0.4633 | 0.3505 | 0.3650 | 0.5470 |
dummy | Dummy Classifier | 0.7746 | 0.5000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0180 |
lr | Logistic Regression | 0.7745 | 0.6471 | 0.0000 | 0.0000 | 0.0000 | -0.0001 | -0.0014 | 1.1100 |
knn | K Neighbors Classifier | 0.7496 | 0.6053 | 0.1907 | 0.3866 | 0.2552 | 0.1253 | 0.1366 | 0.5210 |
dt | Decision Tree Classifier | 0.7218 | 0.6132 | 0.4155 | 0.3902 | 0.4023 | 0.2213 | 0.2216 | 0.0880 |
svm | SVM - Linear Kernel | 0.7112 | 0.0000 | 0.1856 | 0.2105 | 0.1491 | 0.0429 | 0.0487 | 0.1550 |
qda | Quadratic Discriminant Analysis | 0.6754 | 0.5502 | 0.3225 | 0.2944 | 0.3037 | 0.0954 | 0.0965 | 0.1650 |
nb | Naive Bayes | 0.3574 | 0.6415 | 0.9058 | 0.2473 | 0.3886 | 0.0533 | 0.1141 | 0.0300 |
model_rf = create_model('rf')
Accuracy | AUC | Recall | Prec. | F1 | Kappa | MCC | |
---|---|---|---|---|---|---|---|
Fold | |||||||
0 | 0.8003 | 0.7623 | 0.3412 | 0.5979 | 0.4345 | 0.3240 | 0.3428 |
1 | 0.8148 | 0.7630 | 0.3724 | 0.6580 | 0.4757 | 0.3735 | 0.3959 |
2 | 0.8128 | 0.7760 | 0.3578 | 0.6559 | 0.4630 | 0.3613 | 0.3857 |
3 | 0.8128 | 0.7738 | 0.3842 | 0.6422 | 0.4807 | 0.3753 | 0.3937 |
4 | 0.8122 | 0.7507 | 0.3607 | 0.6508 | 0.4642 | 0.3614 | 0.3846 |
5 | 0.8155 | 0.7754 | 0.3783 | 0.6582 | 0.4804 | 0.3781 | 0.3995 |
6 | 0.8115 | 0.7574 | 0.3666 | 0.6443 | 0.4673 | 0.3631 | 0.3845 |
7 | 0.8108 | 0.7766 | 0.3695 | 0.6396 | 0.4684 | 0.3632 | 0.3835 |
8 | 0.8254 | 0.7639 | 0.3842 | 0.7081 | 0.4981 | 0.4035 | 0.4311 |
9 | 0.8107 | 0.7563 | 0.3676 | 0.6378 | 0.4664 | 0.3613 | 0.3816 |
Mean | 0.8127 | 0.7655 | 0.3682 | 0.6493 | 0.4699 | 0.3665 | 0.3883 |
Std | 0.0058 | 0.0089 | 0.0124 | 0.0257 | 0.0155 | 0.0188 | 0.0205 |
tunning_model = tune_model(model_rf)
Accuracy | AUC | Recall | Prec. | F1 | Kappa | MCC | |
---|---|---|---|---|---|---|---|
Fold | |||||||
0 | 0.7976 | 0.7389 | 0.2853 | 0.6062 | 0.3880 | 0.2851 | 0.3143 |
1 | 0.8194 | 0.7485 | 0.3372 | 0.7099 | 0.4573 | 0.3650 | 0.4015 |
2 | 0.8194 | 0.7644 | 0.3607 | 0.6910 | 0.4740 | 0.3777 | 0.4068 |
3 | 0.8168 | 0.7647 | 0.3754 | 0.6667 | 0.4803 | 0.3795 | 0.4026 |
4 | 0.8208 | 0.7423 | 0.3343 | 0.7215 | 0.4569 | 0.3664 | 0.4054 |
5 | 0.8261 | 0.7671 | 0.3636 | 0.7294 | 0.4853 | 0.3945 | 0.4291 |
6 | 0.8155 | 0.7523 | 0.3519 | 0.6742 | 0.4624 | 0.3640 | 0.3921 |
7 | 0.8234 | 0.7415 | 0.3578 | 0.7176 | 0.4775 | 0.3852 | 0.4191 |
8 | 0.8168 | 0.7550 | 0.3314 | 0.6975 | 0.4493 | 0.3557 | 0.3912 |
9 | 0.8154 | 0.7296 | 0.3294 | 0.6871 | 0.4453 | 0.3506 | 0.3848 |
Mean | 0.8171 | 0.7504 | 0.3427 | 0.6901 | 0.4576 | 0.3624 | 0.3947 |
Std | 0.0073 | 0.0119 | 0.0242 | 0.0340 | 0.0265 | 0.0287 | 0.0296 |
tunning_model
RandomForestClassifier(bootstrap=False, ccp_alpha=0.0, class_weight={}, criterion='entropy', max_depth=5, max_features=1.0, max_leaf_nodes=None, max_samples=None, min_impurity_decrease=0.0002, min_impurity_split=None, min_samples_leaf=5, min_samples_split=10, min_weight_fraction_leaf=0.0, n_estimators=150, n_jobs=-1, oob_score=False, random_state=123, verbose=0, warm_start=False)
dt = create_model('dt') # 의사결정트리
rf = create_model('rf') # RandomForest
blender_model_2 = blend_models(estimator_list = [dt, rf])
Accuracy | AUC | Recall | Prec. | F1 | Kappa | MCC | |
---|---|---|---|---|---|---|---|
Fold | |||||||
0 | 0.7275 | 0.7452 | 0.4235 | 0.4000 | 0.4114 | 0.2343 | 0.2345 |
1 | 0.7189 | 0.7300 | 0.3783 | 0.3772 | 0.3777 | 0.1962 | 0.1962 |
2 | 0.7176 | 0.7441 | 0.4106 | 0.3825 | 0.3960 | 0.2121 | 0.2123 |
3 | 0.7242 | 0.7428 | 0.4018 | 0.3914 | 0.3965 | 0.2178 | 0.2179 |
4 | 0.7249 | 0.7294 | 0.4252 | 0.3973 | 0.4108 | 0.2316 | 0.2318 |
5 | 0.7123 | 0.7443 | 0.4370 | 0.3801 | 0.4065 | 0.2179 | 0.2188 |
6 | 0.7348 | 0.7390 | 0.4340 | 0.4157 | 0.4247 | 0.2525 | 0.2526 |
7 | 0.7123 | 0.7436 | 0.4135 | 0.3750 | 0.3933 | 0.2053 | 0.2058 |
8 | 0.7321 | 0.7398 | 0.4311 | 0.4106 | 0.4206 | 0.2465 | 0.2467 |
9 | 0.7121 | 0.7212 | 0.4000 | 0.3706 | 0.3847 | 0.1972 | 0.1974 |
Mean | 0.7217 | 0.7379 | 0.4155 | 0.3900 | 0.4022 | 0.2211 | 0.2214 |
Std | 0.0079 | 0.0078 | 0.0175 | 0.0147 | 0.0144 | 0.0186 | 0.0186 |
best_model_5 = compare_models(n_select=5)
blender_model_5 = blend_models(best_model_5)
Accuracy | AUC | Recall | Prec. | F1 | Kappa | MCC | |
---|---|---|---|---|---|---|---|
Fold | |||||||
0 | 0.8016 | 0.0000 | 0.3176 | 0.6136 | 0.4186 | 0.3133 | 0.3380 |
1 | 0.8221 | 0.0000 | 0.3724 | 0.6978 | 0.4857 | 0.3899 | 0.4180 |
2 | 0.8181 | 0.0000 | 0.3607 | 0.6833 | 0.4722 | 0.3747 | 0.4027 |
3 | 0.8261 | 0.0000 | 0.3930 | 0.7053 | 0.5047 | 0.4094 | 0.4352 |
4 | 0.8221 | 0.0000 | 0.3724 | 0.6978 | 0.4857 | 0.3899 | 0.4180 |
5 | 0.8188 | 0.0000 | 0.3607 | 0.6872 | 0.4731 | 0.3762 | 0.4048 |
6 | 0.8188 | 0.0000 | 0.3724 | 0.6791 | 0.4811 | 0.3824 | 0.4078 |
7 | 0.8287 | 0.0000 | 0.3959 | 0.7181 | 0.5104 | 0.4169 | 0.4441 |
8 | 0.8214 | 0.0000 | 0.3636 | 0.7006 | 0.4788 | 0.3838 | 0.4139 |
9 | 0.8173 | 0.0000 | 0.3588 | 0.6778 | 0.4692 | 0.3713 | 0.3987 |
Mean | 0.8195 | 0.0000 | 0.3668 | 0.6861 | 0.4779 | 0.3808 | 0.4081 |
Std | 0.0069 | 0.0000 | 0.0205 | 0.0269 | 0.0236 | 0.0265 | 0.0270 |
last_model = finalize_model(blender_model_5)
pred = predict_model(last_model, data=test)
pred[0:10]
Model | Accuracy | AUC | Recall | Prec. | F1 | Kappa | MCC | |
---|---|---|---|---|---|---|---|---|
0 | Voting Classifier | 0.8333 | 0.6538 | 0.3526 | 0.6654 | 0.4609 | 0.3732 | 0.3995 |
LIMIT_BAL | SEX | EDUCATION | MARRIAGE | AGE | PAY_1 | PAY_2 | PAY_3 | PAY_4 | PAY_5 | ... | BILL_AMT5 | BILL_AMT6 | PAY_AMT1 | PAY_AMT2 | PAY_AMT3 | PAY_AMT4 | PAY_AMT5 | PAY_AMT6 | default | Label | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 100000 | 2 | 2 | 2 | 23 | 0 | -1 | -1 | 0 | 0 | ... | -159.0 | 567.0 | 380.0 | 601.0 | 0.0 | 581.0 | 1687.0 | 1542.0 | 0 | 0 |
1 | 50000 | 2 | 3 | 2 | 30 | 0 | 0 | 0 | 0 | 0 | ... | 18931.0 | 19617.0 | 1300.0 | 1300.0 | 1000.0 | 1500.0 | 1000.0 | 1012.0 | 0 | 0 |
2 | 360000 | 1 | 1 | 2 | 33 | 0 | 0 | 0 | 0 | 0 | ... | 195969.0 | 179224.0 | 10000.0 | 7000.0 | 6000.0 | 188840.0 | 28000.0 | 4000.0 | 0 | 0 |
3 | 400000 | 2 | 2 | 1 | 29 | 0 | 0 | 0 | 0 | 0 | ... | 356656.0 | 364089.0 | 17000.0 | 15029.0 | 30000.0 | 12000.0 | 12000.0 | 23000.0 | 0 | 0 |
4 | 200000 | 1 | 1 | 1 | 57 | -2 | -2 | -2 | -1 | 2 | ... | 8198.0 | 7918.0 | 0.0 | 0.0 | 8222.0 | 300.0 | 0.0 | 1000.0 | 1 | 0 |
5 | 10000 | 1 | 2 | 1 | 56 | 2 | 2 | 2 | 0 | 0 | ... | 4196.0 | 4326.0 | 2300.0 | 0.0 | 150.0 | 200.0 | 200.0 | 160.0 | 1 | 1 |
6 | 130000 | 2 | 3 | 2 | 29 | 1 | -2 | -2 | -1 | 2 | ... | 10161.0 | 7319.0 | 0.0 | 0.0 | 20161.0 | 0.0 | 7319.0 | 13899.0 | 0 | 0 |
7 | 280000 | 1 | 2 | 1 | 41 | 2 | 2 | 2 | 2 | 2 | ... | 152174.0 | 149415.0 | 6500.0 | 0.0 | 14254.0 | 14850.0 | 0.0 | 5000.0 | 0 | 1 |
8 | 240000 | 1 | 1 | 2 | 28 | -1 | -1 | -1 | -1 | -1 | ... | 476.0 | 326.0 | 326.0 | 326.0 | 5676.0 | 476.0 | 326.0 | 526.0 | 0 | 0 |
9 | 180000 | 1 | 1 | 1 | 36 | 0 | 0 | 0 | 0 | 0 | ... | 97753.0 | 95927.0 | 4655.0 | 2690.0 | 2067.0 | 2142.0 | 2217.0 | 1000.0 | 1 | 0 |
10 rows × 25 columns
from pycaret.utils import check_metric
check_metric(test['default'], pred['Label'], metric='Accuracy')
0.8333